
Learning HJB Viscosity Solutions with PINNs

for Optimal Control

Alena Shilova

In collaboration: Thomas Delliaux, Philippe Preux and Bruno Raffin

January 17, 2024

1



Introduction



Shortly about me

• My name is Alena (pronounced Alyona) Shilova

• PostDoc at Inria Scool and DataMove teams

• Before - PhD at Inria HiePACS and Zenith teams

• Even before - Master of Data Science in Skoltech-MIPT, Moscow

• Knowledge in

• machine learning

• efficient deep learning (high performance deep learning)

• reinforcement learning

• SciML

• optimization

• Contribution to open source:

• rotor, an optimal rematerialization tool compatible with PyTorch

• rlberry, an RL package for research and education

2



PhD work

• Part of The HPC-BigData INRIA Project LAB (IPL)

• Work with , a platform identifying plants from pictures

• To scale, Pl@ntNet goes to larger models, more species

• Training is thus more time and memory-consuming

• I have focused on solving memory issues

• My contributions are in

• rematerialization (saving memory by recomputing activations)

• activation offloading (saving memory by data transfers)

• pipelined model parallelism
3



PostDoc work

• Collaboration with Philippe P. (Scool) and Bruno R. (DataMove)

• At first, HPC for RL

• e.g. Asynchronous Advantage Actor-Critic (A3C)

• e.g. learning world models for MBRL

• SciML for RL

• Use Physics Informed Neural Networks (PINNs) for model learning

• Even better, use PINNs to learn Hamilton Jacobi Bellman eq. (HJB)

• HJB is a continuous-time counterpart of Bellman equation

4



PostDoc work

• Collaboration with Philippe P. (Scool) and Bruno R. (DataMove)

• At first, HPC for RL

• e.g. Asynchronous Advantage Actor-Critic (A3C)

• e.g. learning world models for MBRL

• SciML for RL

• Use Physics Informed Neural Networks (PINNs) for model learning

• Even better, use PINNs to learn Hamilton Jacobi Bellman eq. (HJB)

• HJB is a continuous-time counterpart of Bellman equation

Bridging SciML with Optimal Control!

4



PostDoc work

• Collaboration with Philippe P. (Scool) and Bruno R. (DataMove)

• At first, HPC for RL

• e.g. Asynchronous Advantage Actor-Critic (A3C)

• e.g. learning world models for MBRL

• SciML for RL

• Use Physics Informed Neural Networks (PINNs) for model learning

• Even better, use PINNs to learn Hamilton Jacobi Bellman eq. (HJB)

• HJB is a continuous-time counterpart of Bellman equation

Bridging SciML with Optimal Control!

Promising approach for Continuous Time Reinforcement Learning!

4



Continuous Time vs Discrete Time RL

Motivation

• Physical systems and control tasks operate in continuous time

• But most SOTA RL algorithms rely on discrete time assumption

5



Continuous-time reinforcement

learning: problem definition



Continuous time framework

• State space: O, control space: U

• System dynamics:
dx
dt = f (x(t), u(t)) ⇐⇒ x(t) = x(0) +

∫ t

0
f (x(t), u(t))dt

• Reward function: r defined on Ō

• Exit reward function: R defined on ∂O

• Cumulative discounted reward:

J(x0, u(t)) =
∫ τ

0
γtr(x(t), u(t)) dt + γτR(x(τ)), τ is exit time

• Optimal value function: V (x) = sup
u(t)

J(x , u(t))

6



Hamilton Jacobi Bellman equation

Hamilton Jacobi Bellman

V (x) log γ + sup
u∈U

[
∇xV (x)T · f (x , u) + r(x , u)

]
= 0 x ∈ O

Optimal control can be obtain by setting

π(x) ∈ arg sup
u∈U

[
∇xV (x)T · f (x , u) + r(x , u)

]

Challenges

• Value function can be in general non-smooth function

• HJB can have no ”strong” solutions, but an infinity of ”weak” ones

• i.e. V ∈ C(Ō) but V /∈ C 1(Ō)

7



Challenges illustration

Example (Munos, 2000)

Let x(t) ∈ [0, 1], the control u(t) ∈ {−1,+1} and dx
dt = u.

Moreover, r = 0 everywhere and R > 0 then from the definition on V,

we have :

V (x) = max{R(0)γx ,R(1)γ1−x}

and HJB

V (x) log γ + max{V ′x(x),−V ′x(x)} = 0

Optimal solution for R(0) = 1,

R(1) = 2 and γ = 0.3

Generalized solution for R(0) = 1,

R(1) = 2 and γ = 0.3

8



Viscosity solutions



Viscosity solutions

Let H(x ,W ,∇W ) = −W (x) log γ − supu∈U [∇W (x)f (x , u) + r(x , u)]

Then HJB can be expressed as

H(x ,W ,∇W ) = 0.

Viscosity subsolution

W ∈ C (O) is a viscosity subsolution of HJB in O if ∀φ ∈ C 1(O) and

∀x ∈ O such that φ ≥W on O and φ(x) = W (x), we have:

H(x , φ(x),∇φ(x)) ≤ 0

Viscosity supersolution

W ∈ C (O) is a viscosity supersolution of HJB in O if ∀φ ∈ C 1(O) and

∀x ∈ O such that φ ≤W on O and φ(x) = W (x), we have:

H(x , φ(x),∇φ(x)) ≥ 0

9



Viscosity solutions

Viscosity solution

If W is a viscosity subsolution and a supersolution then it is a viscosity

solution.

Theorem

Value function V ∈ C (Ō) is the unique viscosity solution of HJB in O .
10



Viscosity solutions

Intuition behind viscosity solution

If V ∈ C 1(O):

• Possible to verify the HJB equation for all x ∈ O.

• Verifying the HJB equation is equivalent to be a viscosity solution.

If V /∈ C 1(O):

• Impossible to verify the HJB equation where V is not differentiable.

• Alternatively, replace V by ψ ∈ C 1(O) where it is not differentiable.

11



Solving HJB equation in practice



Solving HJB equation in practice

Numerical methods (Munos, 2000)

Example: finite difference (FD) and finite element method (FEM):

• Results in solving dynamic programming with value iteration

• Convergence of schemes is guaranteed.

• Can be proved to find viscosity solutions

• One major problem: curse of dimensionality.

Solving with neural networks

Solving PDEs with phisycs-informed neural networks (PINNs):

• Can cope with curse of dimensionality.

• No convergence guarantees.

• Don’t take viscosity into account

12



Solving HJB equation in practice

Numerical methods (Munos, 2000)

Example: finite difference (FD) and finite element method (FEM):

• Results in solving dynamic programming with value iteration

• Convergence of schemes is guaranteed.

• Can be proved to find viscosity solutions

• One major problem: curse of dimensionality.

Solving with neural networks

Solving PDEs with phisycs-informed neural networks (PINNs):

• Can cope with curse of dimensionality.

• No convergence guarantees.

• Don’t take viscosity into account → our work

12



Dynamic programming. Results

Value function and policy for FEM scheme with Value Iteration

• Resolution : 200 by 200.

• Stopping criterion :
∥∥V δ

n − V δ
n−1

∥∥
∞ ≤ ε with ε = 10−5.

13



Dynamic programming on pendulum

The main problem of this method is the curse of dimensionality

Example: Cartpole from gym

• State space is a subspace of R4.

• If we want 32 points per axis, the grid will contain 324 = 220 states.

⇒ The problem quickly becomes intractable.

14



Physics-informed neural network

method



Physics-informed neural networks

Data-driven Solutions of Nonlinear PDEs

In order to solve a differential equation
F (x ,W (x),∇xW (x),∇2

xW (x)) = 0, W : Ō → R, x ∈ O

Bk(x ,W (x),∇xW (x),∇2
xW (x)) = 0, x ∈ ∂O, k ≤ K1

Gk(x ,W (x),∇xW (x),∇2
xW (x)) ≤ 0, x ∈ ∂O, k ≤ K2

we design these losses:

• LPDE (θ) = 1
NF

∑NF

i=1

(
F (xi ,W (xi , θ),∇xW (xi , θ),∇2

xW (xi , θ))
)2

• LBk
(θ) = 1

Nk
B

∑Nk
B

i=1

(
Bk(xi ,W (xi , θ),∇xW (xi , θ),∇2

xW (xi , θ))
)2

• LGk′ (θ) =

1
Nk′

G

∑Nk′
G

i=1

([
Gk′(xi ,W (xi , θ),∇xW (xi , θ),∇2

xW (xi , θ))
]+)2

where [f (x)]+ = max{f (x), 0}.

15



Physics-informed neural networks

One should train a neural network W (x , θ) that minimizes:

L(θ) = LPDE (θ) +

K1∑
k=1

λkLBk
(θ) +

K2∑
k=1

λ′kLGk
(θ). (1)

where λk , λ
′
k > 0.

Example {
W ′x −W = 0 on O = [0, 1)

W (0) = 1
(2)

The solution can be found by minimizing the loss

L(θ) = ‖W ′x(., θ)−W (., θ)‖2
2 + λ‖W (0, θ)− 1‖2

2 (3)

The first term is called a PDE loss and the second term a boundary loss.

16



Physics-informed neural networks and viscosity

Problem with PINNs approach

• How can we ensure that our model approximate the value function,

that is, the unique viscosity solution of the HJB equation ?

Viscosity stability lemma

Let W ε ∈ C (O) be a viscosity subsolution (resp. a super solution) of

W ε(x) + F ε(x ,W ε(x),∇xW
ε(x),∇2

xW
ε(x)) = 0. (4)

Suppose that F ε → F uniformly on every compact subset of O, and

W ε →W uniformly on compact subsets of Ō. Then W is a viscosity

subsolution (resp. a supersolution) of Eq. (4) for ε = 0.

Idea

• Solve H(x ,V ε(x),∇V ε(x)) = ε∆V ε(x) with ε decreasing.

• The above equation has a unique smooth solution.

17



Boundary conditions

domain O

Boundary condition

How to impose to stay inside O without reaching ∂O?

⇒ By imposing f (x , u∗(x))Tη(x) < 0 with η(x) the external normal

vector at x ∈ ∂O.

It is equivalent to

−H(x ,W ,∇xW + αη(x)) ≤ 0 ∀α ≤ 0, x ∈ ∂O.

18



Losses for HJB PINNs

LO(θ,SO) =
1

NF

NF∑
i=1

(
H(xi ,W

ε(xi , θ),∇W ε(xi , θ))− εTr(∇2W ε(xi , θ))
)2

L∂O(θ,S∂O) =
1

NB

NB∑
i=1

(
[−H(xi ,W

ε(xi , θ),∇W ε(xi , θ) + αη(xi ))]+
)2

MSE regularization loss to encourage uniform convergence:

LR(θ,SO) =
1

NF

NF∑
i=1

(
W ε(xi , θ)−W εn−1 (xi , θεn−1 )

)2
xi ∈ SO (5)

where W εn−1 (x , θεn−1 ) is the best function obtained for εn−1.

The final loss is:

L(θ,SO ,S∂O) = LO(θ,SO) + λL∂O(θ,S∂O) + λRLR(θ,SO). (6)

We use uniform sampling to get samples from O

For now, we assume that r(x , u) and f (x , u) are known. 19



How to schedule ε?

Non-adaptive scheduler

εn+1 = εnkε if n + 1 ≡ 0 mod Nu otherwise, εn

Adaptive scheduler

εn+1 =


kεδ(εn,θn−1)
δ(εn,θn) εn if kεδ(εn, θn−1) ≤ δ(εn, θn),

and L(θi ) ≥ L(θi−1) ∀i : n − nε + 1 ≤ i ≤ n

εn otherwise,

where δ(ε, θ) = 1
NF

∑
i

∥∥εTr(∇2
xW

ε(xi , θ))
∥∥2

Hybrid scheduler

• Start from high enough ε0 to improve stability.

• Do a given number of ε updates with the non-adaptive scheduler.

• Switch to the adaptive scheduler until the end of the training phase. 20



Physics-informed neural networks. Non-Adaptive Scheduler

Results with non-adaptive scheduler

We used

• kε = 0.5 with Nu = 10 (left)

• kε = 0.5 with Nu = 25 (middle)

• kε = 0.5 with Nu = 75 (right).

The non-adaptive scheduler doesn’t control under-/over-fitting

10 5 0 5 10
3

2

1

0

1

2

3
Value function

55.6

55.8

56.0

56.2

56.4

56.6

10 5 0 5 10
3

2

1

0

1

2

3
Value function

41.4

41.5

41.6

41.7

41.8

41.9

42.0

42.1

10 5 0 5 10
3

2

1

0

1

2

3
Value function

0.930

0.935

0.940

0.945

0.950

0.955

0.960

21



Physics-informed neural networks. Adaptive Scheduler

Results with adaptive scheduler

We used kε = 0.9 with ε0 = 1 (left) and ε0 = 10−3 (right).

• The adaptive scheduler can converge but slowly.

• Starting from a small ε0 increases the speed but can diverge.

Adaptive scheduler may be unstable if starting from small ε

10 5 0 5 10
3

2

1

0

1

2

3
Value function

57.4

57.6

57.8

58.0

58.2

10 5 0 5 10
3

2

1

0

1

2

3
Value function

46.6

46.8

47.0

47.2

47.4

22



Physics-informed neural networks. Hybrid Scheduler

It keeps the strengths of both schedulers without their weaknesses!

10 5 0 5 10
3

2

1

0

1

2

3
Value function

10 5 0 5 10
3

2

1

0

1

2

3
Control

10 5 0 5 10
3

2

1

0

1

2

3
PINNs loss

57.4

57.6

57.8

58.0

58.2

58.4

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Names Hyperparameters values

number of sampled points ND 200000

batch size NS 100

learning rate ν 0.00085

patience adaptive scheduler nε 7

boundary loss coefficient λ 10−1

reg loss coefficient λR 10−3

starting ε ε0 1

number of epochs between ε updates Nu 10

non-adaptive scheduler coefficient kε 0.1

adaptive scheduler coefficient k
′

ε 0.99

number of ε updates with non-adaptive scheduler Nε 5

23



Physics-informed neural networks

Cumulative rewards for the different methods

Problem Method N Mean Std

Pendulum FEM (VI) 200 4133.71 433.02

A2C NA 2180.22 766.25

PPO NA 3273.51 906.41

PINNs NA 3809.59 542.50

CartPole A2C NA 1697.15 398.81

PPO NA 5000.0 0.0

PINNs NA 5000.0 0.0

CartPole Swing-Up A2C NA 90.87 0.73

PPO NA 970.63 130.3

PINNs NA 723.3 175.16

Acrobot PPO NA 1387.3 294.1

PINNs NA 506.4 180.8

24



Conclusion

• Continuous-Time RL depends on solving HJB equation

• Solving it in general case is a challenging task

• Finding viscosity solutions is even harder

• It can be solved

• Either with numerical scheme (FD, FEM, . . . ), but limited

scalability

• Or with neural networks (PINNs-like approach), but less guarantees

• We use ε-scheduling scheme + PINNs to find HJB viscosity

solutions

• Works for classical control problems

• ⇒ needs to be adapted for more complicated environments

25



Conclusion

• Continuous-Time RL depends on solving HJB equation

• Solving it in general case is a challenging task

• Finding viscosity solutions is even harder

• It can be solved

• Either with numerical scheme (FD, FEM, . . . ), but limited

scalability

• Or with neural networks (PINNs-like approach), but less guarantees

• We use ε-scheduling scheme + PINNs to find HJB viscosity

solutions

• Works for classical control problems

• ⇒ needs to be adapted for more complicated environments

25



Future perspectives

• Continue to work at the crossroads of SciML, RL, optimal control

• Improving PINNs solver for the HJB equation

• Consider adaptive sampling without breaking viscosity

• Analyze the effect of ε-scheduling on convergence to V

• Scale it to more complex environments

• Using PINNs, Neural Operators to learn model in MBRL

• PINNs when the model is partially known

• Neural ODE/Neural Operators when it is fully unknown

• Use HPC expertise to further scale the algorithms

• Use data/model parallelisms to train larger DNNs for the above tasks

• Memory saving strategies for SciML forward-backward graphs

26



Other contributions

rlberry

• Python library that manages RL experiments

• Active contributor

AdaStop

Sequential testing for efficient and reliable comparisons of RL Agents.

• It combines Permutation testing

+ Group Sequential testing

+ Multiple Hypothesis testing

MiCaRL

Entropy regularized RL with Cascading networks.

• Use Politex update (Abbasi-Yadkori et al., 2019) for Policy Iteration

• Requires summing different Q-value neural networks

• Can be done efficiently with Cascading networks 27


	Introduction
	Continuous-time reinforcement learning: problem definition
	Viscosity solutions
	Solving HJB equation in practice
	Physics-informed neural network method

